Structure and function of the mouse DNA methyltransferase gene: Dnmt1 shows a tripartite structure.
نویسندگان
چکیده
Dnmt1 is the predominant DNA methyltransferase (MTase) in mammals. The C-terminal domain of Dnmt1 clearly shares sequence similarity with many prokaryotic 5mC methyltransferases, and had been proposed to be sufficient for catalytic activity. We show here by deletion analysis that the C-terminal domain alone is not sufficient for methylating activity, but that a large part of the N-terminal domain is required in addition. Since this complex structure of Dnmt1 raises issues about its evolutionary origin, we have compared several eukaryotic MTases and have determined the genomic organization of the mouse Dnmt1 gene. The 5' most part of the N-terminal domain is dispensible for enzyme activity, includes the major nuclear import signal and comprises tissue-specific exons. Interestingly, the functional subdivision of Dnmt1 correlates well with the structure of the Dnmt1 gene in terms of intron/exon size distribution as well as sequence conservation. Our results, based on functional, structural and sequence comparison data, suggest that the gene has evolved from the fusion of at least three genes.
منابع مشابه
O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملEffects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line
Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...
متن کاملOct-4 Regulates DNA Methyltransferase 1 (Dnmt1) Transcription by Direct Regulatory Element Binding
The transcription factor Oct4 plays a pivotal role for the development of mouse preimplantation embryo, and DNA methyltransferase 1 (Dnmt1) maintains the changes of DNA methylation during mammalian early embryonic development. However, little is known of the role of Oct4 in DNA methylation in mouse. In the present study, Kunming white mice were used as an animal model to elucidate the correlati...
متن کاملExpression of DNA methyltransferase (Dnmt1) in testicular germ cells during development of mouse embryo.
The DNA methylation pattern is reprogrammed in embryonic germ cells. In female germ cells, the short-form DNA methyltransferase Dnmt1, which is an alternative isoform specifically expressed in growing oocytes, plays a crucial role in maintaining imprinted genes. To evaluate the contribution of Dnmt1 to the DNA methylation in male germ cells, the expression profiles of Dnmt1 in embryonic gonocyt...
متن کاملStructural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1).
Methylation of cytosine in DNA plays a crucial role in development through inheritable gene silencing. The DNA methyltransferase Dnmt1 is responsible for the propagation of methylation patterns to the next generation via its preferential methylation of hemimethylated CpG sites in the genome; however, how Dnmt1 maintains methylation patterns is not fully understood. Here we report the crystal st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 297 2 شماره
صفحات -
تاریخ انتشار 2000